DAY 2
Composition of Solar System Comets

Data Sources
- Comet missions
- Mass spectrometers

Sample return

Great data, but limited

We need remote sensing data
TYPES OF MOLECULES
VERY DIFFERENT AT
DIFFERENT WAVELENGTHS

PRIMARY VOLATILES
RADIO OR IR

DAUGHTER
PRODUCTS

VISIBLE
MOST ABUNDANT PRIMARY VOLATILES

- H_2O
- CO (<1 - 40%)
- CO_2 (1 - 30%)

SOME EXCEPTIONS, E.G. C/2016 R2

A LOT OF $\text{N}_2 + \text{CO}$

ROSETTA

ROSINA - MANY MOLECULES IMPOSSIBLE TO SEE FROM GROUND.

- O_2 up to 10%, AVERAGE 4%
- GLYCINE ...
- NOBLE GASES, ISOTOPIC RATIOS
- K. ALTWEgg's "ZOO"
Comet Taxonomies
- Compare compositions of comets

Families:
- Main Belt comets
- Jupiter Family comets (sc. disk)
- Isotropic comets
- Long period - Halley-type

Seem to be 2 classes based on prod. volatiles
Some depleted in carbon chain species
Many sub-classes possible $C_2 + C_3$

Formation vs. evolution?
TAXONOMY FROM PRIMARY VOLATILES
- NO CLEAR GROUPING
 EACH COMET
 A UNIQUE FINGERPRINT
- NO CLEAR DIFFERENCE BETWEEN DYNAMIC FAMILIES

\[
\downarrow
\]

NO "TYPICAL" COMET

COMPLICATION: COMPOSITION OF COMET CHANGES
- DIURNALLY
- WITH HELIOCENTRIC DISTANCE
Exocomet Compositions

- Gas detections with spectroscopy

β Pic b II

Variable saturation, redshift

→ Small gaseous clouds

- UV → Al, Fe, Mg mainly ionized or strongly ionized.

First difficulties - < 1 day variability
- Strong blends
- Almost no blue shifts

27 years later > 1500 spectra
• Ca II & Fe I
• Fe I \ll Fe II
• Fe II variations
• Al III variations

Highly ionized species, e.g. CIV
Shock in addition to UV.

Stargazers $< 5 R_\odot$ @ β Pic
> 200 km/s 1 redshift shape well reproduced
ISOTOPES

C & O dredged up in evolved stars

Pattern of D/H in solar system generally consistent with solid accretion spectral fingerprints of isotopologues

MODEL:

Chemistry → Opacities → Temp.

→ Synthetic Observation Parameters + Reduction

Doppler imaging

Next?
Exocomet composition within belts
- Carry complex volatiles
- Few data points

Collisional evolution ...

Observing icy exocometes when inward delivery taking place
> 20% of nearby stars have dust.

Short-lived - radiation pressure →

Must be continuously produced - collisional cascade.

Belt loses mass over time.

After protoplanetary disk formation, time-variable red-shifted gas & dust from inward-scattered exocomets. Exocomet gas - also matter of timescales. CO must be replenished - not primordial. Other species? CN? Photodissociation important.
DISCUSSION

- Exocomets - very complex scenarios, e.g. collisions
- Very difficult to model.
- Has equivalent of nice model scenario happened elsewhere?
 - Scattering & cascade of comets
- Are there too many comets to explain, so some comets are from other stars anyway?
 - "Exocomets may be closer than we think!"
DISCUSSION

- How weird would parent system of a local exocomet have to be to be obvious?
- Nearby stars - all similar origins?
- Look at D/H - but varies at one comet!
- Several techniques - consistent?
- Ages of comets - possible? Good chance of saying whether dynamically new.
DISCUSSION

COMETARY SCIENTISTS ARE ALWAYS LOOKING AT THE LATEST INTERESTING COMET!